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PFAS are used in heat, oll, stain, and water-resistant products

* PFAS — per and polyfluoralkyl  Destroyed at high temperatures

substances . .
» Semi-volatile

* Family of manufactured chemicals S
* Miscible in water

» Non-biodegradable
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PFAS migrate through air, soil, and water
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Why are PFAS a contaminant of concern? |
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PFAS are a contaminant of concern because
- they do not break down

- are a large family of chemicals, only a small
number have been studied

- widely detected throughout the environment

- readily move through the environment
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» What technologies are available for treating
PFAS in drinking water?
[ ]
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Surfactant properties influence water freatment technologies

Hydrophobic tail

Hydrophilic
head
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GAC and IX are two effect water treatment technologies

Granular activated lon exchange
carbon (GAC) resin (1X) Chloride
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Typical PFAS water treatment

—r E—

’ LEAD VESSEL T ’ LAG VESSEL

T

GACoorIX GACorIX

Change-out T

o criteria

w
|>
A
Py



GAC vs. Single-Pass IX

Demonstration for drinking water
treatment

Widely-demonstrated Not used as extensively

Iron, manganese, TOC, TSS (>10 Iron, manganese, TOC, TSS (>5

Pre-treatment considerations : : . . :
micron) micron), residual oxidants (chlorine)

Removal of other anionic

Co-contaminant removal Removal of other organic pollutants :
compounds (ex. sulfates, nitrates)

Short-chain PFAS adsorption Poor removal Minimal removal
(PFBA, PFBS, etc.)

Corrosion control considerations Likely no effects Impacts chloride/sulfate ratio
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GAC vs. Single-Pass IX

GAC

Reaction kinetics

Empty-bed contact time (EBCT)
Vessel size

Footprint

Media cost

Disposal

Longer
8-10 minutes
Larger/taller

Larger

$1-2/1b

Reactivation or incineration

Single-Pass IX

Shorter
2-4 minutes
Smaller/shorter
Smaller
$4-6/1b

Incineration
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What about membranese

* More advanced
pretreatment often
required to mitigate
fouling

* Concentrate

management
challenging

* Higher capital and
O&M costs




Next generation of PFAS water treatment

» Media adsorption with a PFAS destruction element
- Regenerable IX

- Novel adsorption media

* Technologies that concentrate PFAS into a smaller stream
for subsequent treatment or destruction

- Foam fractionation
- Membrane treatment, high-recovery/closed circuit
 Destruction technologies
- Electrochemical oxidation

- Plasma
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» What technologies are available for treating
PFAS in drinking water?
[ ]
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» What technologies are available for treating
PFAS in drinking water?

— QGranular activated carbon
- lon exchange

- Membrane separation
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» How can PFAS treatment technologies be
tested for site specific applications?
[ ]
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Bemidji's drinking water wells have elevated PFAS concentrations
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Minnesota has drinking water guidelines for five PFAS

: Current Health
Current Health Risk T (Tl s

Full Chemical Name Limit (/HLRL) Value (HBV)
”g Hg/L
PFBA Perfluorobutanoic acid 7.0 No value
PFOA Perfluorooctanoic acid 0.035 No value
PFBS Perfluorobutane sulfonate 7.0 2.0
PFOS Perfluorooctane sulfonic acid 0.3 0.015
PFHxS Perfluorohexane sulfonate No limit 0.047

] PFBA conc. PFOA conc. PFBS conc. PFOS conc. PFHxS conc.
Health Risk Index (HRI) = 7 + 0.035 + > + 0.015 + 0.047 -
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Bemidji's drinking water wells have elevated PFAS concentrations

® HRI>1.0




Accelerated column test and a pilot test evaluated PFAS treatment

Accelerated Column Test (ACT)
ASTM D6586 Pilot Test

Pe®
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City of Bemid]i freatment technology testing methods

Calgon Innovation Center
(Pittsburgh, PA)

Test location

Media

Volume of water
Bed volumes
Treatment simulated
Test duration

Empty-bed contact time

Pretreatment

Calgon Filtrasorb 400 GAC (F400)

50 gallons
118,000
730 days
2 months

8.8 minutes

Particulate filtration (10 micron),
glass wool

City of Bemidji - Well #4 well house

DOW PSR2+ resin / Evoqua APR2

resin

57,000 / 62,000 gallons
355,000 / 386,000

625 / 680 days

4.5 months

2.5 minutes

Birm filtration (iron/manganese),
particulate filtration (5 micron)
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Well #4 water quality

_______ |Units____|Average _

Alkalinity, total, as CaCO3 mg/I 227
Carbon, total organic mg/I 1.0
Chloride mg/I 1.3
Hardness, as CaCO3 ug/I 217
Nitrogen, nitrate + nitrite, as N mg/I < MDL
pH SU 7.3
Solids, total dissolved mg/I 223
Solids, total suspended mg/I < MDL
Specific conductance @ 25 °C umhos/cm 435
Sulfate, as SO4 mg/I 3.1
Calcium mg/I 60.3
Iron mg/ 1.0
Magnesium mg/I 16.4

Manganese mg/ 0.6




Well #4 water quality

| Units | Average

n-Ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ng/I < MDL

n-Methyl perfluorooctanesulfonamidoacetic acid (MeFOSAA) ng/I < MDL

Perfluorobutane sulfonate (PFBS) ng/l 30

Perfluorobutanoic acid (PFBA) ng/I 6

Perfluorodecanoic acid (PFDA) ng/I < MDL

Perfluorododecanoic acid (PFDoA / PFDoDA) ng/I < MDL

Perfluoroheptanoic acid (PFHpA) ng/I 8

Perfluorohexane sulfonate (PFHxS) ng/! 520 HBV =47 ng/L
Perfluorohexanoic acid (PFHxA) ng/ 37

Perfluorononanoic acid (PFNA) ng/I < MDL
Perfluorooctanesulfonamide (PFOSA / FOSA) ng/I < MDI
Perfluorooctanesulfonate (PFOS) ng/! 170 HBV = 15 ng/L
Perfluorooctanoic acid (PFOA) ng/I 35 HRL = 35 ng/L
Perfluoropentanoic acid (PFPeA) ng/I 9

Perfluorotetradecanoic acid (PFTA / PFTeDA / PFTeA) ng/I < MDL

Perfluorotridecanoic acid (PFTrDA / PFTriA) ng/I < MDL

Perfluoroundecanoic acid (PFUnA / PFUNnDA) ng/I < MDL BARR



Treatment
technology
testing
objectives

=

Demonstrate ability to remove PFAS below
MDH HBVs and HRLs

Assess pretreatment needs
Establish PFAS breakthrough order

Evaluate change-out criteria for full scale
treatment
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GAC accelerated column testing (ACT)
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Single-pass IX pilot testing




GAC ACT
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GAC ACT
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GAC ACT IX Pilot

PFOA Breakthrough PFOA Breakthrough ~50%
breakthrough
PFOA, both tests

A b
o wun
A
o wun

%: 35 %: 35
£ 30 £ 30
825 825
B 20 B 20
- -
c s —
g 15 g 15 S ‘\
|5} 1%
c c
S 10 S 10 __4¢A.—’4"

5 5 ‘—’.',/)'y

0 0 »

0 100 200 300 400 500 600 700 800 0 200 400 600 800
Simulated Days Simulated Days
—Influent —o—GAC Effluent —e—Influent  —l=PSR2 Plus Effluent APR2 Effluent
PFBA Breakthrough PFBA Breakthrough

= N
0 O
== N
0 O

S 16 ~ 16
3 3
2 14 2 14
c 12 c 12
.2 .0
= 10 = 10
K g s
g g _m—"
v} v S
6 Y o
O 4 U 4

2 2

0 0

0 100 200 300 400 500 600 700 800 0 200 400 600 800
Simulated Days Simulated Days
Influent =i—GAC Effluent

w
|>
A
Py

=@=|nfluent == PSR2 Plus Effluent APR2 Effluent



City of Bemidji freatment technology ftesting summary

Meets PFAS treatment objectives

Time until initial breakthrough of PFAS
(exceeding MDH HBV or HRL)

Initial lead vessel change-out
(50% breakthrough of PFHxS)

Subsequent lead vessel change-out

GAC

Yes

364 days
(PFHXxS)

950 days

700 days

Single-Pass IX

Yes

70-88 days
(PFHXS)

1,002 days

857 days

w
|>
A
Py



» How can PFAS treatment technologies be
tested for site specific applications?
[ ]
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» How can PFAS treatment technologies be
tested for site specific applications?

- Accelerated column tests and pilot tests
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* How did testing inform full scale design and
operations?
[ ]

BARR




Pretreatment considerations — iron and manganese removal

Fe (mg/L) Mn (mg/L)

Average Max Average Max
Well 3 0.01 0.02 0.03 0.03
Well 4 1.8 1.8 0.6 0.6
Well 5 04 0.4 0.2 0.2
Well 6 0.6 0.6 0.2 0.2
Well 7 0.2 0.2 0.1 0.1

Secondary MCL 0.3 0.05
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Chemical feed addition
(NaMnQ,)

Raw water

influent Greensand filtration
from wells

GAC treatment

Existing water
treatment facility

PO,>" and F -
(PO,* an ) Backwash supply

To distribution

Backwash
discharge
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Water treatment plant includes greensand filtration + GAC




* How did testing inform full scale design and
operations?
[ ]
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* How did testing inform full scale design?
- Informed pre-design water quality sampling

- Provided indication that iron and manganese
pretreatment was needed

- Informed GAC treatment empty-bed contact time
(carbon volume, vessel size)

- Informed range of operational flow rates

- Provides preliminary indication of GAC change-
out frequency
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How does the near-term design
accommodate future build-out?
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Knock-out panels were added for connection to future vessels
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Piping will connect through knock-out and tfemporary doors
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Chemical tanks sized for expansion

Orthophosphate Sodium Permanganate

e System sized for near-term flow e System sized for expansion flow
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Near-term system designed with a temporary backwash tank

Expansion

» Backwash system will include a
settling and recycling system

Temporary backwash tank
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How does the near-term design
accommodate future build-out?
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* How does the near-term design
accommodate future build-out?

- Near-term building was configured for expansion
to the east with planned knock-out panels and
piping routes with space for:

» the permanent/underground backwashing
= relocation of chemical processes
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City of Bemidji, Minnesota Near Term Water Treatment Plant
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GOVERNMENT AND POLITICS

‘A success story for our community': Bemidji officials take
Gov. Walz on tour of water treatment plant




Time-lapse construction video
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