City of Bemidji PFAS Water Treatment:

Concept Development through

Full-Scale Design and Implementation

Becca Vermace & Katie Wolohan Barr Engineering Company

NSPE-MI Annual Conference – May 6, 2020

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

PFAS are used in heat, oil, stain, and water-resistant products

- PFAS per and polyfluoralkyl substances
- Family of manufactured chemicals
- Non-biodegradable

- Destroyed at high temperatures
- Semi-volatile
- Miscible in water

PFAS migrate through air, soil, and water

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- PFAS are a contaminant of concern because
 - they do not break down
 - are a large family of chemicals, only a small number have been studied
 - widely detected throughout the environment
 - readily move through the environment

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

Surfactant properties influence water treatment technologies

Granular activated carbon (GAC)

Typical PFAS water treatment

	GAC	Single-Pass IX	
Demonstration for drinking water treatment	Widely-demonstrated	Not used as extensively	
Pre-treatment considerations	Iron, manganese, TOC, TSS (>10 micron)	lron, manganese, TOC, TSS (>5 micron), residual oxidants (chlorine)	
Co-contaminant removal	Removal of other organic pollutants	Removal of other anionic compounds (ex. sulfates, nitrates)	
Short-chain PFAS adsorption (PFBA, PFBS, etc.)	Poor removal	Minimal removal	
Corrosion control considerations	Likely no effects	Impacts chloride/sulfate ratio	

GAC vs. Single-Pass IX

	GAC	Single-Pass IX
Reaction kinetics	Longer	Shorter
Empty-bed contact time (EBCT)	8-10 minutes	2-4 minutes
Vessel size	Larger/taller	Smaller/shorter
Footprint	Larger	Smaller
Media cost	\$1-2/lb	\$4-6/lb
Disposal	Reactivation or incineration	Incineration

What about membranes?

- More advanced
 pretreatment often
 required to mitigate
 fouling
- Concentrate
 management
 challenging
- Higher capital and O&M costs

Next generation of PFAS water treatment

- Media adsorption with a PFAS destruction element
 - Regenerable IX
 - Novel adsorption media

- Technologies that concentrate PFAS into a smaller stream for subsequent treatment or destruction
 - Foam fractionation
 - Membrane treatment, high-recovery/closed circuit
- Destruction technologies
 - Electrochemical oxidation
 - Plasma

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- What technologies are available for treating PFAS in drinking water?
 - Granular activated carbon
 - Ion exchange
 - Membrane separation

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

Bemidji's drinking water wells have elevated PFAS concentrations

- Groundwater drinking water supply
- Five supply wells down gradient of the City's municipal airport
- No existing treatment other than chemical addition
- Current average daily water demand: 1.4 MGD (~1,000 GPM)
- Current peak demand: 2.8 MGD (~2,000 GPM)
- 2040 average daily water demand: 1.7 MGD
- 2040 peak demand: 3.2 MGD

Minnesota has drinking water guidelines for five PFAS

Short name	Full Chemical Name	Current Health Risk Limit (HRL) µg/L	Current Health Based Guidance Value (HBV) µg/L
PFBA	Perfluorobutanoic acid	7.0	No value
PFOA	Perfluorooctanoic acid	0.035	No value
PFBS	Perfluorobutane sulfonate	7.0	2.0
PFOS	Perfluorooctane sulfonic acid	0.3	0.015
PFHxS	Perfluorohexane sulfonate	No limit	0.047

 $Health Risk Index (HRI) = \frac{PFBA conc.}{7} + \frac{PFOA conc.}{0.035} + \frac{PFBS conc.}{2} + \frac{PFOS conc.}{0.015} + \frac{PFHxS conc.}{0.047}$

Bemidji's drinking water wells have elevated PFAS concentrations

Accelerated column test and a pilot test evaluated PFAS treatment

Accelerated Column Test (ACT) ASTM D6586

City of Bemidji treatment technology testing methods

	GAC ACT	Single-Pass IX Pilot	
Test location	Calgon Innovation Center (Pittsburgh, PA)	City of Bemidji - Well #4 well house	
Media	Calgon Filtrasorb 400 GAC (F400)	DOW PSR2+ resin / Evoqua APR2 resin	
Volume of water	50 gallons	57,000 / 62,000 gallons	
Bed volumes	118,000	355,000 / 386,000	
Treatment simulated	730 days	625 / 680 days	
Test duration	2 months	4.5 months	
Empty-bed contact time	8.8 minutes	2.5 minutes	
Pretreatment	Particulate filtration (10 micron), glass wool	Birm filtration (iron/manganese), particulate filtration (5 micron)	

Well #4 water quality

	Units	Average	
Alkalinity, total, as CaCO3	mg/l	227	
Carbon, total organic	mg/l	1.0	
Chloride	mg/l	1.3	
Hardness, as CaCO3	ug/l	217	
Nitrogen, nitrate + nitrite, as N	mg/l	< MDL	
рН	SU	7.3	
Solids, total dissolved	mg/l	223	
Solids, total suspended	mg/l	< MDL	
Specific conductance @ 25 °C	umhos/cm	435	
Sulfate, as SO4	mg/l	3.1	
Calcium	mg/l	60.3	
Iron	mg/l	1.0	
Magnesium	mg/l	16.4	
Manganese	mg/l	0.6	

Well #4 water quality

	Units	Average	
n-Ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ng/l	< MDL	
n-Methyl perfluorooctanesulfonamidoacetic acid (MeFOSAA)	ng/l	< MDL	
Perfluorobutane sulfonate (PFBS)	ng/l	30	
Perfluorobutanoic acid (PFBA)	ng/l	6	
Perfluorodecanoic acid (PFDA)	ng/l	< MDL	
Perfluorododecanoic acid (PFDoA / PFDoDA)	ng/l	< MDL	
Perfluoroheptanoic acid (PFHpA)	ng/l	8	
Perfluorohexane sulfonate (PFHxS)	ng/l	520	<i>HBV = 47 ng/L</i>
Perfluorohexanoic acid (PFHxA)	ng/l	37	
Perfluorononanoic acid (PFNA)	ng/l	< MDL	
Perfluorooctanesulfonamide (PFOSA / FOSA)	ng/l	< MDL	
Perfluorooctanesulfonate (PFOS)	ng/l	170	HBV = 15 ng/L
Perfluorooctanoic acid (PFOA)	ng/l	35	HRL = 35 ng/L
Perfluoropentanoic acid (PFPeA)	ng/l	9	
Perfluorotetradecanoic acid (PFTA / PFTeDA / PFTeA)	ng/l	< MDL	
Perfluorotridecanoic acid (PFTrDA / PFTriA)	ng/l	< MDL	
Perfluoroundecanoic acid (PFUnA / PFUnDA)	ng/l	< MDL	BARR

Treatment technology testing objectives

 Demonstrate ability to remove PFAS below MDH HBVs and HRLs

- Assess pretreatment needs
- Establish PFAS breakthrough order
- Evaluate change-out criteria for full scale treatment

GAC accelerated column testing (ACT)

CalgonCarbon Pure Water. Clean Air. Better World.

Single-pass IX pilot testing

—— Influent

IX Pilot

GAC ACT

IX Pilot

GAC ACT

IX Pilot

	GAC	Single-Pass IX
Meets PFAS treatment objectives	Yes	Yes
Time until initial breakthrough of PFAS (exceeding MDH HBV or HRL)	364 days (PFHxS)	70-88 days (PFHxS)
Initial lead vessel change-out (50% breakthrough of PFHxS)	950 days	1,002 days
Subsequent lead vessel change-out	700 days	857 days

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- How can PFAS treatment technologies be tested for site specific applications?
 - Accelerated column tests and pilot tests

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

Pretreatment considerations – iron and manganese removal

	Fe (mg/L)		Mn (mg/L)	
	Average	Max	Average	Max
Well 3	0.01	0.02	0.03	0.03
Well 4	1.8	1.8	0.6	0.6
Well 5	0.4	0.4	0.2	0.2
Well 6	0.6	0.6	0.2	0.2
Well 7	0.2	0.2	0.1	0.1
Secondary MCL	0.3		0.0	05

BARR

Water treatment plant includes greensand filtration + GAC

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- How did testing inform full scale design?
 - Informed pre-design water quality sampling
 - Provided indication that iron and manganese pretreatment was needed
 - Informed GAC treatment empty-bed contact time (carbon volume, vessel size)
 - Informed range of operational flow rates
 - Provides preliminary indication of GAC changeout frequency

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

Knock-out panels were added for connection to future vessels

Piping will connect through knock-out and temporary doors

Chemical tanks sized for expansion

Orthophosphate

Sodium Permanganate

Near-term system designed with a temporary backwash tank

Expansion

 Backwash system will include a settling and recycling system

Temporary backwash tank

BARR

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

- How does the near-term design accommodate future build-out?
 - Near-term building was configured for expansion to the east with planned knock-out panels and piping routes with space for:
 - the permanent/underground backwashing
 - relocation of chemical processes

- Why are PFAS a contaminant of concern?
- What technologies are available for treating PFAS in drinking water?
- How can PFAS treatment technologies be tested for site specific applications?
- How did testing inform full scale design and operations?
- How does the near-term design accommodate future build-out?

City of Bemidji, Minnesota Near Term Water Treatment Plant

Acknowledgements

• City of Bemidji

- Craig Gray, Todd Anderson, Sam Anderson, Al Felix, Nate Matthews

Minnesota Department of Health

 Todd Johnson, Eric Weller, Brian Noma, David Weum, Ginny Yingling, Jane de Lambert

• Barr Engineering

 Brian LeMon, Julie Macejkovic, Katie Wolohan, Becca Vermace, Jeff Ubl, John Greer, Terri Olson, Erin Dietrich, Cory Anderson

Thank you!

bvermace@barr.com kwolohan@barr.com

GOVERNMENT AND POLITICS

'A success story for our community': Bemidji officials take Gov. Walz on tour of water treatment plant

Written By: Matthew J. Liedke | Oct 30th 2020 - 7am.

Time-lapse construction video

