Dam Safety and Civil Structural Projects Past and Present

Marianne Walter May 6, 2021

Who Is Your Presenter?

Marianne Walter

- Intern at CE summer 2008
- BSE Western Michigan University 2009
- Started at CE in 2009
 - Engineering Services Department
 - Generation Engineering
 - Generation Planning 2017-2020
- MSE Norwich University 2013

Hydro Site Locations

Dam	Capacity (Mw's)	Plant Commissioned	FERC License Expiration Date
Rogers	6.72	1906	6/30/2034
Hardy	31.3	1931	6/30/2034
Croton	9	1907	6/30/2034
Hodenpyl	18	1925	6/30/2034
Тірру	21	1918	6/30/2034
Calkins Bridge	2.63	1935	3/31/2040
Webber	3.3	1907	5/31/2044
Mio	5	1916	6/30/2034
Alcona	8	1924	6/30/2034
Loud	4	1913	6/30/2034
Five Channels	6	1912	6/30/2034
Cooke	9	1911	6/30/2034
Foote	9	1918	6/30/2034
Ludington Pumped Storage	2310	1973	6/30/2069

Hydroelectric facilities

Rigorous Safety Program Ensures Public Safety

Elements of Consumers Energy's Dam Safety Program

- Owners Dam Safety Philosophy Statement
 - Dam safety is of the highest priority
- Rigorous regulatory compliance
- Owner/Regulator cooperation
- Strong leadership support
- Effective operations & maintenance
- Detailed instrumentation and monitoring
- Frequent Inspection and reporting
- Emergency Action Plans
- Continuous improvement

Hardy Dam

All Consumers Energy hydro generation employees have a responsibility to maintain and operate Consumers Energy's hydro generation plants in a safe, compliant, efficient, and dependable manner.

Detailed Monitoring for Dam Safety

Minimum Dam Safety Inspection Frequency

- Operator monthly (daily dam safety observations completed by Operators)
- Supervisor quarterly
- Dam Safety Engineering Staff yearly
- FERC yearly
- Independent Consultant (Code of Federal Regulations Part 12D) every 5 years
 - Provided to Michigan Department of Environment, Great Lakes, and Energy
- External Owners Dam Safety Program External Audit- every 5 years
 - 2019/2020 Audit "All levels of CEC have a commitment to high standards for dam safety and place public safety, personnel safety and environmental compliance above all other performance goals."

Inspector Qualifications

- Consumers Energy personnel complete annual dam safety training.
- The Independent Consultants are FERC approved.

Diligent Dam Safety Inspections

Inspections and Monitoring Observe for

- Seepage (new or significant changes)
- Piping (sand boils)
- Depressions (sinkholes)
- Erosion
- Brush growth
- Concrete condition
- Spillway condition
- Unusual instrumentation readings
- Public safety devices
- Any other signs of instability of any project works

Tippy Dam

Ensuring the Reliability of Hydropower

Asset Health Inspection Frequency

- Semi-annual civil inspection
 - Specific condition assessments as necessary
- Bi-Annual mechanical inspections
- 6 Year electrical inspection

System Health

- Asset Health Database
 - Updated through out the year
 - Reviewed annually
- Threats to Generation
 - Updated through out the year
 - Reviewed in weekly in daily operating review

Tippy Dam

Present Projects

Hardy Dam (Engineering)

- Auxiliary Spillway Replacement
- Hydraulic Barrier (Splash wall)
- Crest Compaction2020 Webber Dam
- Training Wall Replacement
 2021 Ludington Pumped Storage
- Upper Reservoir Liner Mastic Coating
- Trench Features (Maintenance)

Hardy Dam

Hardy Auxiliary Spillway Remediation

- Engineering for Replacement
- Design Considerations
 - PMF (Increase Capacity)
 - Roadway
 - Passive Control Structure
 - Board of Consultants
- Construction
 - Target 2022/2023 Start

Hydraulic Barrier & Crest Compaction

Webber Dam

Webber Training Wall

Webber Training Wall

Webber Training Wall

Ludington Pumped Storage (LPS)

LPS Upper Reservoir Mastic Liner

LPS Trench Features (Maintenance)

Past Projects

- Croton Right Spillway Wall Replacement (2019)
- LPS Interior Ramp Remediation (2014)
- LPS Numerical and Physical Modeling (2011/2012)

Croton Right Spillway Wall Replacement

Croton Right Spillway Wall Replacement

LPS Interior Ramp Replacement

Figure D-14: Streamlines; Existing flowrate, pumping, 908.5'

Figure 28: Upper Reservoir Pumping Flow Patterns; WSEL 908.5; 11,105 cfs per Unit

Figure 29: Pumping Flow Patterns; Q =11,105 cfs per unit ; WSEL = 577'

Questions?

